IRB – Antibody Discovery

IRB-Usi

The antibody discovery and engineering program at the Institute for Research in Biomedicine (IRB)

Over two decades, the antibody discovery program at the IRB contributed to advances in monoclonal antibody technologies while making important scientific discoveries in the field of antibodies against a broad range of infectious diseases, such as those caused by coronaviruses, flaviviruses, respiratory syncytial virus, paramyxoviruses, influenza, rabies, parainfluenza and malaria (see references below).

Monoclonal antibodies that were discovered at the IRB, or using IRB-licensed technologies, are undergoing clinical development (for example CoV-X4042, which is effective against all coronavirus variants; Bianchini et al) and in some cases already reached clinical approval (e.g. Ansuvimab against ebola and Sotrovimab against COVID-19).

In recent years, the platform was expanded to include antibody engineering and computational modeling methods to enhance the effectiveness of natural antibodies (e.g. Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice; De Gasparo et al ). Moreover, novel areas of endeavor include epitope-targeted discovery (e.g. Antibodies targeting highly conserved viral regions; Bianchini et al) and Discovery of post-infectious autoantibodies with anti-inflammatory potential; (Muri et al).

The antibody discovery and engineering activities at the IRB are in coordination with numerous international collaborators, including European consortia (e.g. Antibody Therapy Against Coronavirus, ATAC and Integrated Services for Infectious Disease Outbreak Research ISIDORe) and investigators in the United States and other Countries (United World Antiviral Research Network UWARN).

Left: Scientists in the Robbiani Lab characterizing anti-inflammatory antibodies from COVID-19 patients. Middle: Artistic rendering of a bispecific antibody against COVID-19 (CoV-X4042) currently undergoing clinical development (courtesy of Varani lab) Right: Structure of the coronavirus (SARS-CoV-2) spike molecule with highlighted in blue higly conserved regions targeted by virus-neutralizing “coldspot” antibodies (couresy of Cavalli lab).

Publications

Human neutralizing antibodies to cold linear epitopes and subdomain 1 of the SARS-CoV-2 spike glycoprotein

Bianchini, F., Crivelli, V., Abernathy, M.E., Guerra, C., Palus, M., Muri, J., Marcotte, H., Piralla, A., Pedotti, M., De Gasparo, R., Simonelli, L., Matkovic, M., Toscano, C., Biggiogero, M., Calvaruso, V., Svoboda, P., Cervantes Rincón, T., Fava, T., Podešvová, L., Shanbhag, A.A., Celoria, A., Sgrignani, J., Stefanik, M., Hönig, V., Pranclova, V., Michalcikova, T., Prochazka, J., Guerrini, G., Mehn, D., Ciabattini, A., Abolhassani, H., Jarrossay, D., Uguccioni, M., Medaglini, D., Pan-Hammarström, Q., Calzolai, L., Fernandez, D., Baldanti, F., Franzetti-Pellanda, A., Garzoni, C., Sedlacek, R., Ruzek, D., Varani, L., Cavalli, A., Barnes, C.O. and D.F. Robbiani. Sci Immunol. 2023; 8(81):eade0958

Autoantibodies against chemokines post-SARS-CoV-2 infection correlate with disease course

Muri, J., V. Cecchinato, A. Cavalli, A. A. Shanbhag, M. Matkovic, M. Biggiogero, P. A. Maida, J. Moritz, C. Toscano, E. Ghovehoud, R. Furlan, F. Barbic, A. Voza, G. De Nadai, C. Cervia, Y. Zurbuchen, P. Taeschler, L. A. Murray, G. Danelon-Sargenti, S. Moro, T. Gong, P. Piffaretti, F. Bianchini, V. Crivelli, L. Podesvova, M. Pedotti, D. Jarrossay, J. Sgrignani, S. Thelen, M. Uhr, E. Bernasconi, A. Rauch, A. Manzo, A. Ciurea, M. B. L. Rocchi, L. Varani, B. Moser, B. Bottazzi, M. Thelen, B. A. Fallon, O. Boyman, A. Mantovani, C. Garzoni, A. Franzetti-Pellanda, M. Uguccioni and D. F. Robbiani. Nat Immunol. 2023; 24:604-611.

Broad and potent neutralizing human antibodies to tick-borne flaviviruses protect mice from disease

Agudelo, M., M. Palus, J. R. Keeffe, F. Bianchini, P. Svoboda, J. Salat, A. Peace, A. Gazumyan, M. Cipolla, T. Kapoor, F. Guidetti, K. H. Yao, J. Elsterova, D. Teislerova, A. Chrdle, V. Honig, T. Oliveira, A. P. West, Y. E. Lee, C. M. Rice, M. R. MacDonald, P. J. Bjorkman, D. Ruzek, D. F. Robbiani and M. C. Nussenzweig. J Exp Med. 2021; 218:e20210236

Structural basis of malaria RIFIN binding by LILRB1-containing antibodies

Chen, Y., K. Xu, L. Piccoli, M. Foglierini, J. Tan, W. Jin, J. Gorman, Y. Tsybovsky, B. Zhang, B. Traore, C. Silacci-Fregni, C. Daubenberger, P. D. Crompton, R. Geiger, F. Sallusto, P. D. Kwong and A. Lanzavecchia. Nature. 2021; 592:639-643

Bispecific IgG neutralizes SARS-CoV-2 variants and prevents escape in mice

De Gasparo, R., M. Pedotti, L. Simonelli, P. Nickl, F. Muecksch, J. C. C. Lorenzi, F. Mazzola, D. Magrì, T. Michalcikova, J. Haviernik, V. Honig, I. Cassaniti, E. Percivalle, B. Mrazkova, N. Polakova, A. Fortova, J. Tureckova, V. Iatsiuk, S. Di Girolamo, P. Palus, D. Zudova, P. Bednar, I. Bukova, F. Bianchini, D. Mehn, R. Nencka, P. Strakova, O. Pavlis, J. Rozman, S. Gioria, J. C. Sammartino, F. Giardina, S. Gaiarsa, Q. P. Hammarström, C. O. Barnes, A. Piralla, P. J. Bjorkman, F. Baldanti, L. Calzolai, M. C. Nussenzweig, P. D. Bieniasz, T. Hatziioannou, J. Prochazka, R. Sedlacek, D. F. Robbiani, D. Ruzek and L. Varani. Nature. 2021; 593:424-428.

Identification and Structure of a Multidonor Class of Head-Directed Influenza-Neutralizing Antibodies Reveal the Mechanism for Its Recurrent Elicitation

Cheung, C. S., A. Fruehwirth, P. C. G. Paparoditis, C. H. Shen, M. Foglierini, M. G. Joyce, K. Leung, L. Piccoli, R. Rawi, C. Silacci-Fregni, Y. Tsybovsky, R. Verardi, L. Wang, S. Wang, E. S. Yang, B. Zhang, Y. Zhang, G. Y. Chuang, D. Corti, J. R. Mascola, L. Shapiro, P. D. Kwong, A. Lanzavecchia and T. Zhou. Cell Rep. 2020; 32:108088.

Induction of Potent Neutralizing Antibody Responses by a Designed Protein Nanoparticle Vaccine for Respiratory Syncytial Virus

Marcandalli, J., B. Fiala, S. Ols, M. Perotti, W. de van der Schueren, J. Snijder, E. Hodge, M. Benhaim, R. Ravichandran, L. Carter, W. Sheffler, L. Brunner, M. Lawrenz, P. Dubois, A. Lanzavecchia, F. Sallusto, K. K. Lee, D. Veesler, C. E. Correnti, L. J. Stewart, D. Baker, K. Lore, L. Perez and N. P. King. Cell. 2019; 176(6): 1420-1431 e1417

Persistent Antibody Clonotypes Dominate the Serum Response to Influenza over Multiple Years and Repeated Vaccinations

Lee, J., P. Paparoditis, A. P. Horton, A. Fruhwirth, J. R. McDaniel, J. Jung, D. R. Boutz, D. A. Hussein, Y. Tanno, L. Pappas, G. C. Ippolito, D. Corti, A. Lanzavecchia and G. Georgiou. Cell Host Microbe. 2019; 25(3): 367-376 e365

Structure-based design of a quadrivalent fusion glycoprotein vaccine for human parainfluenza virus types 1-4

Stewart-Jones, G. B. E., G. Y. Chuang, K. Xu, T. Zhou, P. Acharya, Y. Tsybovsky, L. Ou, B. Zhang, B. Fernandez-Rodriguez, V. Gilardi, C. Silacci-Fregni, M. Beltramello, U. Baxa, A. Druz, W. P. Kong, P. V. Thomas, Y. Yang, K. E. Foulds, J. P. Todd, H. Wei, A. M. Salazar, D. G. Scorpio, B. Carragher, C. S. Potter, D. Corti, J. R. Mascola, A. Lanzavecchia and P. D. Kwong. Cell Host Microbe. 2019; 25(3): 367-376 e365

A public antibody lineage that potently inhibits malaria infection through dual binding to the circumsporozoite protein

Tan, J., B. K. Sack, D. Oyen, I. Zenklusen, L. Piccoli, S. Barbieri, M. Foglierini, C. S. Fregni, J. Marcandalli, S. Jongo, S. Abdulla, L. Perez, G. Corradin, L. Varani, F. Sallusto, B. K. L. Sim, S. L. Hoffman, S. H. I. Kappe, C. Daubenberger, I. A. Wilson and A. Lanzavecchia. Net Med. 2018; 24: 401-407

Public antibodies to malaria antigens generated by two LAIR1 insertion modalities

Pieper, K., J. Tan, L. Piccoli, M. Foglierini, S. Barbieri, Y. Chen, C. Silacci-Fregni, T. Wolf, D. Jarrossay, M. Anderle, A. Abdi, F. M. Ndungu, O. K. Doumbo, B. Traore, T. M. Tran, S. Jongo, I. Zenklusen, P. D. Crompton, C. Daubenberger, P. C. Bull, F. Sallusto and A. Lanzavecchia. Nature. 2017; 548: 597-601

Antibody-guided vaccine design: identification of protective epitopes

Lanzavecchia A, Fruhwirth A, Perez L, and D. Corti. Curr Opin Immunol. 2016; 41: 62-7

Development of broad-spectrum human monoclonal antibodies for rabies post-exposure prophylaxis

De Benedictis P, Minola A, Rota Nodari E, Aiello R, Zecchin B, Salomoni A, Foglierini M, Agatic G, Vanzetta F, Lavenir R, Lepelletier A, Bentley E, Weiss R, Cattoli G, Capua I, Sallusto F, Wright E, Lanzavecchia A, Bourhy H, and D. Corti. EMBO Mol Med. 2016; 8: 407-21

A LAIR1 insertion generates broadly reactive antibodies against malaria variant antigens

Tan J, Pieper K, Piccoli L, Abdi A, Foglierini M, Geiger R, Tully CM, Jarrossay D, Ndungu FM, Wambua J, Bejon P, Fregni CS, Fernandez-Rodriguez B, Barbieri S, Bianchi S, Marsh K, Thathy V, Corti D, Sallusto F, Bull P, and A. Lanzavecchia. Nature. 2016; 529: 105-9

Prophylactic and postexposure efficacy of a potent human monoclonal antibody against MERS coronavirus

Corti D, Zhao J, Pedotti M, Simonelli L, Agnihothram S, Fett C, Fernandez-Rodriguez B, Foglierini M, Agatic G, Vanzetta F, Gopal R, Langrish CJ, Barrett NA, Sallusto F, Baric RS, Varani L, Zambon M, Perlman S, and A. Lanzavecchia. Proc Natl Acad USA 2015; 112: 10473-8

Cross-neutralization of four paramyxoviruses by a human monoclonal antibody

Corti, D., S. Bianchi, F. Vanzetta, A. Minola, L. Perez, G. Agatic, B. Guarino, C. Silacci, J. Marcandalli, B. J. Marsland, A. Piralla, E. Percivalle, F. Sallusto, F. Baldanti and A. Lanzavecchia. Nature. 2013; 501(7467): 439-443

Heterosubtypic neutralizing antibodies are produced by individuals immunized with a seasonal influenza vaccine

Corti, D., A. L. Suguitan, Jr., D. Pinna, C. Silacci, B. M. Fernandez-Rodriguez, F. Vanzetta, C. Santos, C. J. Luke, F. J. Torres-Velez, N. J. Temperton, R. A. Weiss, F. Sallusto, K. Subbarao and A. Lanzavecchia. J Clin Invest. 2010; 120(5): 1663-1673

Isolation of human monoclonal antibodies that potently neutralize human cytomegalovirus infection by targeting different epitopes on the gH/gL/UL128-131A complex

Macagno, A., N. L. Bernasconi, F. Vanzetta, E. Dander, A. Sarasini, M. G. Revello, G. Gerna, F. Sallusto and A. Lanzavecchia J Virol. 2010; 84(2): 1005-1013